Counting Integral Lamé Equations by Means of Dessins D’enfants

نویسنده

  • SANDER R. DAHMEN
چکیده

We obtain an explicit formula for the number of Lamé equations (modulo linear changes of variable) with index n and projective monodromy group of order 2N , for given n ∈ Z and N ∈ N. This is done by performing the combinatorics of the ‘dessins d’enfants’ associated to the Belyi covers which transform hypergeometric equations into Lamé equations by pull-back.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grothendieck’s Dessins D’enfants, Their Deformations, and Algebraic Solutions of the Sixth Painlevé and Gauss Hypergeometric Equations

Grothendieck’s dessins d’enfants are applied to the theory of the sixth Painlevé and Gauss hypergeometric functions, two classical special functions of isomonodromy type. It is shown that higher-order transformations and the Schwarz table for the Gauss hypergeometric function are closely related to some particular Bely̆ı functions. Moreover, deformations of the dessins d’enfants are introduced, ...

متن کامل

Lamé operators with projective octahedral and icosahedral monodromies

We show that there exists a Lamé operator Ln with projective octahedral monodromy for each n ∈ 1 2 (N + 1 2 ) ∪ 1 3 (N + 1 2 ), and with projective icosahedral monodromy for each n ∈ 1 3 (N+ 1 2 )∪ 1 5 (N+ 1 2 ). To this end, we construct Grothendieck’s dessins d’enfants corresponding to the Belyi morphisms which pull-back hypergeometric operators into Lamé operators Ln with the desired monodro...

متن کامل

Galois invariants of dessins d’enfants

The two main problems of the theory of dessins d’enfants are the following: i) given a dessin, i.e., a purely combinatorial object, find the equations for β and X explicitly; ii) find a list of (combinatorial? topological? algebraic?) invariants of dessins which completely identify their Gal(Q̄/Q)-orbits. The second problem can be interestingly weakened from Gal(Q̄/Q) to ĜT , but it remains absol...

متن کامل

Dessins d’Enfants, Their Deformations and Algebraic the Sixth Painlevé and Gauss Hypergeometric Functions

We consider an application of Grothendieck’s dessins d’enfants to the theory of the sixth Painlevé and Gauss hypergeometric functions: two classical special functions of the isomonodromy type. It is shown that, higher order transformations and the Schwarz table for the Gauss hypergeometric function are closely related with some particular Belyi functions. Moreover, we introduce a notion of defo...

متن کامل

Belyi-extending Maps and the Galois Action on Dessins D’enfants

We study the absolute Galois group by looking for invariants and orbits of its faithful action on Grothendieck’s dessins d’enfants. We define a class of functions called Belyi-extending maps, which we use to construct new Galois invariants of dessins from previously known invariants. Belyiextending maps are the source of the “new-type” relations on the injection of the absolute Galois group int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006